The first conformal Dirac eigenvalue on 2-dimensional tori

نویسندگان

  • BERND AMMANN
  • EMMANUEL HUMBERT
چکیده

Let M be a compact manifold with a spin structure χ and a Riemannian metric g. Let λ2g be the smallest eigenvalue of the square of the Dirac operator with respect to g and χ. The τ -invariant is defined as τ(M,χ) := sup inf q λ2gVol(M, g) 1/n where the supremum runs over the set of all conformal classes on M , and where the infimum runs over all metrics in the given class. We show that τ(T , χ) = 2 √ π if χ is “the” non-trivial spin structure on T . In order to calculate this invariant, we study the infimum as a function on the spin-conformal moduli space and we show that the infimum converges to 2 √ π at one end of the spin-conformal moduli space. 1 MSC 2000: 53 A 30, 53C27 (Primary) 58 J 50 (Secondary)

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Spectral estimates on 2-tori

We prove upper and lower bounds for the eigenvalues of the Dirac operator and the Laplace operator on 2-dimensional tori. In particluar we give a lower bound for the first eigenvalue of the Dirac operator for non-trivial spin structures. It is the only explicit estimate for eigenvalues of the Dirac operator known so far that uses information about the spin structure. As a corollary we obtain lo...

متن کامل

The Supremum of Conformally Covariant Eigenvalues in a Conformal Class

Let (M, g) be a compact Riemannian manifold of dimension ≥ 3. We show that there is a metrics g̃ conformal to g and of volume 1 such that the first positive eigenvalue the conformal Laplacian with respect to g̃ is arbitrarily large. A similar statement is proven for the first positive eigenvalue of the Dirac operator on a spin manifold of dimension ≥ 2.

متن کامل

ar X iv : m at h / 06 07 71 6 v 1 [ m at h . D G ] 2 7 Ju l 2 00 6 THE SPINORIAL τ - INVARIANT AND 0 - DIMENSIONAL SURGERY

Let M be a compact manifold with a metric g and with a fixed spin structure χ. Let λ + 1 (g) be the first non-negative eigenvalue of the Dirac operator on (M, g, χ). We set τ (M, χ) := sup inf λ + 1 (g) where the infimum runs over all metrics g of volume 1 in a conformal class [g 0 ] on M and where the supremum runs over all conformal classes [g 0 ] on M. Let (M # , χ #) be obtained from (M, χ)...

متن کامل

A Spinorial Analogue of Aubin’s Inequality

Let (M,g, σ) be a compact Riemannian spin manifold of dimension ≥ 7. We show that if (M,g) is not conformally flat, then there is a metric g̃ conformal to g such that the first positive eigenvalue λ̃ of the Dirac operator on (M, g̃, σ) satisfies λ̃ Vol(M, g̃) < (n/2) Vol(S). It follows from this inequality that the infimum of the first positive Dirac eigenvalue is attained in the conformal class of ...

متن کامل

A holographic principle for the existence of parallel spinor fields and an inequality of Shi-Tam type

Suppose that Σ = ∂M is the n-dimensional boundary of a connected compact Riemannian spin manifold (M, 〈 , 〉) with nonnegative scalar curvature, and that the (inward) mean curvature H of Σ is positive. We show that the first eigenvalue of the Dirac operator of the boundary corresponding to the conformal metric 〈 , 〉H = H 〈 , 〉 is at least n/2 and equality holds if and only if there exists a non-...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006